Please select your home edition
Edition
Feb-Nov23 Leaderboard TEMO2

Big fish, little fish: Habitat and fish size

by NOAA Fisheries 12 Feb 2018 07:27 UTC
Scuba diver Brett Taylor uses stereo-video technology to survey fish assemblages on outer reef slopes © Steven Lindfield

Fish size and growth rate are key elements of fishery productivity. Fish are ectotherms or "cold-blooded," meaning their body temperature and metabolic rate depends upon the temperature of their environment.

A lower temperature results in a higher metabolic rate; therefore, fishes in temperate (cold) zones usually grow larger than those in the warm tropics. However, sometimes we observe large and unexpected changes in body size of fishes at much smaller geographic scales across which temperature cannot explain this observation. Understanding why this variation in size occurs in coral reef fishes is important for developing effective ecosystem-based fisheries management strategies.

An international team, led by researchers from the Pacific Islands Fisheries Science Center, recently completed a study investigating fish size variation across the largest coral reef ecosystem on Earth, the Australian Great Barrier Reef. The researchers surveyed 82 sites within 31 distinct reefs spanning 750 kilometers (466 miles) of the northern Great Barrier Reef. They used underwater video technology, a non-extractive technique, while scuba diving to record and estimate the body sizes of parrotfishes. They tested the patterns against a variety of factors (for example: predation, competition, temperature, and productivity) that might affect body size and discovered that body size was overwhelmingly influenced by how much wave action the reef is subjected to. As parrotfishes feed on the reef itself (or more precisely, a thin film of algae, bacteria, and detritus that accumulates within and on top of the reef), the researchers concluded that effects of wave action on food supply for these fishes is probably the dominant driver.

This conclusion, however, sets the stage for a story that becomes quite complex and with some interesting aspects that are not often considered. These parrotfishes were not necessarily doing "better" in one habitat versus another. Rather, the differences observed in body size within each habitat reflected their ability to adapt to and survive in different environments that are shaped by more or less wave action.

Surprisingly, these fishes are even able to adjust their mating strategy to each environment. For instance, in sheltered habitats, where these fishes generally grow larger, large males defend territories with multiple females. In contrast, smaller males on more exposed reefs spawned in large groups. The latter scenario also included a large number of "sneaker males"—males that curiously undertake the coloration of a female as a disguise. Interestingly, these differences in mating strategies also had a strong effect on when, and at what size, females change sex—it is typical for parrotfishes to mature as a female and then later in life change sex to a male.

The effects of wave energy on coral reef habitats appears to be a fundamental driver of the "pace of life," even driving some of the most basic aspects of the biology of important coral reef fishes. Coral reef ecosystems are under heavy pressure from rising ocean temperatures, human-induced runoff, and fishing pressure, all of which can affect the structure of habitats. The findings of this study foster a better understanding of how fishes interact with coral reef habitats and provide a baseline for predicting and interpreting future changes in fish productivity as it relates to coastal fisheries.

Read more: " Bottom-up processes mediated by social systems drive demographic traits of coral-reef fishes " (published in Ecology).

Related Articles

Gray Whale population abundance
Eastern North Pacific Gray Whale population increases after observed decline To understand how the eastern North Paci?c gray whale population is responding to changes in the environment following its recovery from low numbers due to commercial whaling, we study changes in abundance over time. Posted on 5 Apr
New research reveals diversity of Killer Whales
Long viewed as one worldwide species, killer whale diversity now merits more Scientists have resolved one of the outstanding questions about one of the world's most recognizable creatures, identifying two well-known killer whales in the North Pacific Ocean as separate species. Posted on 31 Mar
Where the Leatherbacks Roam
Leatherbacks commonly swim from the South and Mid-Atlantic Bights during the warmer months Scientists find evidence of critical feeding grounds for endangered leatherback turtles along the U.S. Atlantic coast by studying movement behavior with satellite tags. Posted on 30 Mar
Meet Makana
One of the first Hawaiian Monk Seal Pups of 2024 Hawai'i Marine Animal Response partnered with Kahuku Elementary School to name the first Hawaiian monk seal pup of O'ahu in 2024. Posted on 23 Mar
Marine heatwaves reshape ecosystem
Heatwaves are becoming more frequent and intense in our oceans A new study highlights marine heatwaves' complex and cascading effects on marine ecosystems. While some species may benefit from these changes, others are likely to struggle. Posted on 20 Mar
California Current ecosystem shows resilience
It is facing a strong 2024 El Niño event The 2023-2024 California Current Ecosystem Status Report shows an abundance of forage fish and a productive system fueled by upwelling. Posted on 19 Mar
Some research takes a lifetime
Researchers keep track of Northern Elephant Seals using flipper tags Long-term research under Marine Mammal Protection Act scientific research permits provides insight into northern elephant seal moms and pups. Posted on 17 Mar
Making strides in marine mammal research
NOAA Fisheries and partners celebrate the 50th anniversary of the Endangered Species Act 2023 marked the 50th anniversary of the Endangered Species Act. Under this law, NOAA Fisheries is responsible for the conservation and recovery of more than 160 endangered and threatened marine species—including many marine mammals. Posted on 12 Feb
NOAA Fisheries and BOEM release joint strategy
Part of a larger interagency effort to promote recovery of endangered species Today, NOAA Fisheries and the Bureau of Ocean Energy Management (BOEM) released a final joint strategy to protect and promote the recovery of endangered North Atlantic right whales while responsibly developing offshore wind energy. Posted on 26 Jan
Documenting the Elusive North Pacific Right Whale
Dive in with the NOAA Fisheries Podcast North Atlantic right whales have justly gotten a lot of attention and news coverage due to their dwindling numbers and sightings along the busy East Coast. Posted on 13 Jan
Cure Marine - Cure 55 - FOOTERHenri-Lloyd - For the ObsessedOcean Safety 2023 - New Identity - FOOTER