Please select your home edition
Edition
Spinlock - Adventure Proof - 728x90

Coral Larvae use sound to find a home on the reef

by Woods Hole Oceanographic Institution 15 Dec 2018 11:13 UTC
A photo of the healthy Tektite reef, which has an abundance of coral and fish. © Amy Apprill, Woods Hole Oceanographic Institution

Choosing a place to call home is one of the most consequential choices a coral can make. In the animal's larval stage, it floats freely in the ocean—but once it settles down, it anchors itself permanently to the rocky substrate of a reef, and remains stuck there for the rest of its life. Exactly how these larvae choose a specific place to live, however, is largely unclear.

A new study from the Woods Hole Oceanographic Institution (WHOI) is starting to unravel that mystery. Researchers found that the soundscape of a reef—the combined sounds of all animals living nearby—might play a major role in steering corals towards healthy reef systems and away from damaged ones. The study was published Dec. 12, 2018, in the journal Royal Society Open Science.

"Sound is a sensory cue that a lot of marine animals rely on to communicate and navigate. But it hasn't been well studied on coral reefs." says Amy Apprill, a coral reef ecologist, who is co-lead author on the study along with soundscape ecologist Ashlee Lillis. Both are researchers at WHOI. "In this study, we brought together scientists with expertise in acoustics and coral reefs to examine if sound influences how corals choose their home."

Healthy reefs, says Apprill, are not exactly quiet places—they're filled with the constant crackling of snapping shrimp, low grunts from fish, calls from dolphins or whales, and other noises. It's a bit like being in a lush rainforest, amid a cacophony of bird songs and animal calls.

To test how those sounds influence corals, Apprill and her colleagues first collected newly-spawned larvae from colonies of Porites astreoides, or the "mustard hill coral," a common variety on reefs near the Caribbean island of St. John, where the study was based. Once collected, she placed the tiny animals in sealed containers of seawater, each with a ceramic substrate inside to simulate rocky surface of the reef. The team fixed the containers in three places in the waters off St. John: a bare, sandy patch, a dying, unhealthy reef, and a more thriving, heavily-populated reef system.

Above each cluster of containers, the researchers placed a hydrophone, a specialized microphone that can measure sound underwater, and recorded the site for the next two and a half days. At the end of the experiment, the team counted the number of coral larvae that had settled in each area, and analyzed the soundscape around them.

"In all areas, you'll hear snapping shrimp, this sort of pervasive crackling sound that's similar to bacon frying. It's a constant background noise. On healthy reefs you also hear the sounds of fish‚ these really low frequency grunts and chirps and knocks," says Aran Mooney, a sensory ecologist and bioacoustician at WHOI, who recorded and studied the reef audio. "Those sounds potentially reflect the biodiversity of a reef. A nice healthy reef is going to have a lot of fish sounds, and a non-healthy reef is going to have very few fish sounds," he says.

Coral larvae may take note of those sounds. On the study's "healthy" reef, which had a large variety of low-frequency sounds, larval settlement was twice as high as the less-healthy or control sites. "We think that without those sounds, the larvae might pass up the option of settling in a particular reef," Apprill says.

She thinks these findings could lead to better ways of preserving coral reefs in the future, like reducing noise pollution from boats, ships, and low-flying aircraft near sensitive marine sites. It might even help rebuild those reefs damaged by climate change or intense storms.

"This study has big implications for coral restoration efforts. Could you take a concrete slab in the ocean, play the sounds of a healthy reef nearby, and start attracting new coral?" says Apprill. "At this point, the reefs may not be able to rebuild on their own, and we may need to start relying on innovation from science."

Also collaborating on the study were Justin J. Suca, Cynthia Becker, and Joel Llopiz of Woods Hole Oceanographic Institution. Funding for the study was provided by NSF Biological Oceanography award 15-36782, which supported all authors.

This article has been provided by the courtesy of Woods Hole Oceanographic Institution.

Related Articles

Waters west of Europe drive ocean overturning
Circulation playing a critical role in regulating Earth's climate The Atlantic meridional overturning circulation (MOC)—a deep-ocean process that plays a critical role in regulating Earth's climate — is primarily driven by cooling waters west of Europe, finds a new international study published Feb. 1 in Science. Posted on 3 Feb
Deep-sea buffet is just out of reach
Far below the ocean floor, sediments are teeming with bizarre zombie-like microbes Far below the ocean floor, sediments are teeming with bizarre zombie-like microbes. Although they're technically alive, they grow in slow motion, and can take decades for a single cell to divide—something their cousins at the surface Posted on 24 Jan
The long memory of the Pacific Ocean
Historical cooling periods are still playing out in the deep Pacific The ocean has a long memory. When the water in today's deep Pacific Ocean last saw sunlight, Charlemagne was the Holy Roman Emperor, the Song Dynasty ruled China and Oxford University had just held its very first class. Posted on 8 Jan
Sea level rises along U.S. East Coast
Why is it faster in some places compared to others? Sea levels are rising globally from ocean warming and melting of land ice, but the seas aren't rising at the same rate everywhere. Sea levels have risen significantly faster in some U.S. East Coast regions compared to others. Posted on 23 Dec 2018
Greenland is melting faster than ever
Melt 'off the charts' compared with past four centuries Surface melting across Greenland's mile-thick ice sheet began increasing in the mid-19th century and then ramped up dramatically during the 20th and early 21st centuries, showing no signs of abating, according to new research published Dec. 5, 2018 Posted on 8 Dec 2018
Flounder now tumor-free in Boston Harbor
More than three-quarters of the winter flounder caught in Boston Harbor In the late 1980s, more than three-quarters of the winter flounder caught in Boston Harbor—one of the most polluted harbors in America—showed signs of liver disease, many of them with cancerous tumors. Posted on 29 Nov 2018
Acidification may reduce sea scallop fisheries
Fishermen harvest more than $500 million worth of Atlantic sea scallops Each year, fishermen harvest more than $500 million worth of Atlantic sea scallops from the waters off the east coast of the United States. A new model created by scientists at the Woods Hole Oceanographic Institution (WHOI). Posted on 23 Sep 2018
NSF awards contract to WHOI led group
State-of-the-art marine facility continues delivering data and new insight The National Science Foundation (NSF) announced that it has awarded a coalition of academic and oceanographic research organizations a five-year, $220 million contract to operate and maintain the Ocean Observatories Initiative (OOI). Posted on 22 Sep 2018
Natural climate oscillations in North Atlantic
Warming global climate is melting the second largest ice sheet in the world Scientists have known for years that warming global climate is melting the Greenland Ice Sheet, the second largest ice sheet in the world. Posted on 19 Sep 2018
WHOI-Keck Real Time 3-D Acoustic Telescope
A first-of-its-kind acoustic telescope is under development A first-of-its-kind acoustic telescope is under development at the Woods Hole Oceanographic Institution (WHOI), funded by a $1 million grant from the W.M. Keck Foundation, that will permit researchers to map and study the underwater soundscape. Posted on 3 Sep 2018
Marine Resources BOTTOMVaikobi 2019 - Footer 2Zhik 2018 Yacht 728x90 BOTTOM