Please select your home edition
Edition
Spinlock - Deckvest - 728x90

Why is the sea level rising faster in some places along the U.S. East Coast than others?

by Woods Hole Oceanographic Institution 23 Dec 2018 17:27 UTC
The seas have been rising more swiftly in some coastal communities compared to others along the U.S. East Coast leaving residents and property more vulnerable to flood waters. © Attapol Yiemsiriwut, Shutterstock

Sea levels are rising globally from ocean warming and melting of land ice, but the seas aren't rising at the same rate everywhere. Sea levels have risen significantly faster in some U.S. East Coast regions compared to others. A new study led by the Woods Hole Oceanographic Institution (WHOI) reveals why.

Over the 20th century, sea level has risen about a foot and a half in coastal communities near Cape Hatteras in North Carolina and along the Chesapeake Bay in Virginia. In contrast, New York City and Miami have experienced about a 1-foot rise over the same period, while sea levels farther north in Portland, Maine, rose only about half a foot.

The reason is a phenomenon called "post-glacial rebound," explains Chris Piecuch, lead author of a study published on Dec. 20, 2018, in the journal Nature. Essentially, land areas in the Northern Hemisphere that once were covered by mammoth ice sheets during the last Ice Agesuch as Canada and parts of the Northeast U.S.were weighed down like a trampoline with a boulder on it. At the same time, land around the periphery of the ice sheetsalong the U.S. mid-Atlantic coast, for examplerose up. As the ice sheets melted from their peak at the Last Glacial Maximum 26,500 years ago, the weighed-down areas gradually rebounded, while the peripheral lands started sinking, creating sort of a see-saw effect. Even though the ice sheets had disappeared by 7,000 years ago, the see-sawing of post-glacial rebound continues to this day.

To explore why sea levels rose faster during the last century in areas such as Norfolk Naval Station in Virginia and the Outer Banks in North Carolina, Piecuch and colleagues gathered tidal gauge measurements of sea levels, GPS satellite data that show how much the land has moved up and down over time, and fossils in sediment from salt marshes, which record past coastal sea levels. They combined all of this observational data with complex geophysical modelssomething that has not been done beforeto give a more complete view of sea level changes since 1900.

The research team found that post-glacial rebound accounted for most of the variation in sea level rise along the East Coast. But, importantly, when that factor was stripped away, the researchers found that "sea level trends increased steadily from Maine all the way down to Florida," Piecuch said.

"The cause for that could involve more recent melting of glaciers and ice sheets, groundwater extraction and damming over the last century," Piecuch says. "Those effects move ice and water mass around at Earth's surface, and can impact the planet's crust, gravity field and sea level."

"Post-glacial rebound is definitely the most important process causing spatial differences in sea level rise on the U.S. East Coast over the last century. And since that process plays out over millennia, we're confident projecting its influence centuries into the future," Piecuch explains. "But regarding the mass redistribution piece of the puzzle, we're less certain how that's going to evolve into the future, which makes it much more difficult to predict sea level rise and its impact on coastal communities."

This article has been provided by the courtesy of Woods Hole Oceanographic Institution.

Related Articles

The long memory of the Pacific Ocean
Historical cooling periods are still playing out in the deep Pacific The ocean has a long memory. When the water in today's deep Pacific Ocean last saw sunlight, Charlemagne was the Holy Roman Emperor, the Song Dynasty ruled China and Oxford University had just held its very first class. Posted on 8 Jan
Coral Larvae use sound to find a home on the reef
Choosing a place to call home is one of the most consequential choices a coral can make Choosing a place to call home is one of the most consequential choices a coral can make. In the animal's larval stage, it floats freely in the ocean—but once it settles down, it anchors itself permanently to the rocky substrate of a reef Posted on 15 Dec 2018
Greenland is melting faster than ever
Melt 'off the charts' compared with past four centuries Surface melting across Greenland's mile-thick ice sheet began increasing in the mid-19th century and then ramped up dramatically during the 20th and early 21st centuries, showing no signs of abating, according to new research published Dec. 5, 2018 Posted on 8 Dec 2018
Flounder now tumor-free in Boston Harbor
More than three-quarters of the winter flounder caught in Boston Harbor In the late 1980s, more than three-quarters of the winter flounder caught in Boston Harbor—one of the most polluted harbors in America—showed signs of liver disease, many of them with cancerous tumors. Posted on 29 Nov 2018
Acidification may reduce sea scallop fisheries
Fishermen harvest more than $500 million worth of Atlantic sea scallops Each year, fishermen harvest more than $500 million worth of Atlantic sea scallops from the waters off the east coast of the United States. A new model created by scientists at the Woods Hole Oceanographic Institution (WHOI). Posted on 23 Sep 2018
NSF awards contract to WHOI led group
State-of-the-art marine facility continues delivering data and new insight The National Science Foundation (NSF) announced that it has awarded a coalition of academic and oceanographic research organizations a five-year, $220 million contract to operate and maintain the Ocean Observatories Initiative (OOI). Posted on 22 Sep 2018
Natural climate oscillations in North Atlantic
Warming global climate is melting the second largest ice sheet in the world Scientists have known for years that warming global climate is melting the Greenland Ice Sheet, the second largest ice sheet in the world. Posted on 19 Sep 2018
WHOI-Keck Real Time 3-D Acoustic Telescope
A first-of-its-kind acoustic telescope is under development A first-of-its-kind acoustic telescope is under development at the Woods Hole Oceanographic Institution (WHOI), funded by a $1 million grant from the W.M. Keck Foundation, that will permit researchers to map and study the underwater soundscape. Posted on 3 Sep 2018
Following the fresh water
Fingerprint of ancient abrupt climate change found in Arctic A research team led by Woods Hole Oceanographic Institution (WHOI) found the fingerprint of a massive flood of fresh water in the western Arctic, thought to be the cause of an ancient cold snap that began around 13,000 years ago. Posted on 15 Jul 2018
Geologic History of Ayeyawady River Delta mapped
Ayeyawady River delta in Myanmar is home to millions of people The Ayeyawady River delta in Myanmar is home to millions of people, and is a hub of agricultural activity. Unlike other large rivers across the world, however, the Ayeyawady has been relatively untouched by large infrastructure and dam projects Posted on 14 Jun 2018
Zhik 2018 Dongfeng 728x90 BOTTOMMarine Resources BOTTOM