Please select your home edition
Edition
Grapefruit 2018 728x90

The long memory of the Pacific Ocean

by Woods Hole Oceanographic Institution 8 Jan 06:22 UTC
Cold waters that sank in polar regions hundreds of years ago during the Little Ice Age are still impacting deep Pacific Ocean temperature trends. While the deep Pacific temperature trends are small, they represent a large amount of energy in Earth system © Larry Madin, Woods Hole Oceanographic Institution

The ocean has a long memory. When the water in today's deep Pacific Ocean last saw sunlight, Charlemagne was the Holy Roman Emperor, the Song Dynasty ruled China and Oxford University had just held its very first class. During that time, between the 9th and 12th centuries, the earth's climate was generally warmer before the cold of the Little Ice Age settled in around the 16th century. Now ocean surface temperatures are back on the rise but the question is, do the deepest parts of the ocean know that?

Researchers from the Woods Hole Oceanographic Institution (WHOI) and Harvard University have found that the deep Pacific Ocean lags a few centuries behind in terms of temperature and is still adjusting to the entry into the Little Ice Age. Whereas most of the ocean is responding to modern warming, the deep Pacific may be cooling.

"These waters are so old and haven't been near the surface in so long, they still 'remember' what was going on hundreds of years ago when Europe experienced some of its coldest winters in history," said Jake Gebbie, a physical oceanographer at WHOI and lead author of the study published Jan. 4, 2019, in the journal Science.

"Climate varies across all timescales," adds Peter Huybers, Professor of Earth and Planetary Sciences at Harvard University and co-author of the paper. "Some regional warming and cooling patterns, like the Little Ice Age and the Medieval Warm Period, are well known. Our goal was to develop a model of how the interior properties of the ocean respond to changes in surface climate."

What that model showed was surprising.

"If the surface ocean was generally cooling for the better part of the last millennium, those parts of the ocean most isolated from modern warming may still be cooling," said Gebbie.

The model is, of course, a simplification of the actual ocean. To test the prediction, Gebbie and Huybers compared the cooling trend found in the model to ocean temperature measurements taken by scientists aboard the HMS Challenger in the 1870s and modern observations from the World Ocean Circulation Experiment of the 1990s.

The HMS Challenger, a three-masted wooden sailing ship originally designed as a British warship, was used for the first modern scientific expedition to explore the world's ocean and seafloor. During the expedition from 1872 to 1876, thermometers were lowered into the ocean depths and more than 5,000 temperature measurements were logged.

"We screened this historical data for outliers and considered a variety of corrections associated with pressure effects on the thermometer and stretching of the hemp rope used for lowering thermometers," said Huybers.

The researchers then compared the HMS Challenger data to the modern observations and found warming in most parts of the global ocean, as would be expected due to the warming planet over the 20th Century, but cooling in the deep Pacific at a depth of around two kilometers.

"The close correspondence between the predictions and observed trends gave us confidence that this is a real phenomenon," said Gebbie.

These findings imply that variations in surface climate that predate the onset of modern warming still influence how much the climate is heating up today. Previous estimates of how much heat the Earth had absorbed during the last century assumed an ocean that started out in equilibrium at the beginning of the Industrial Revolution. But Gebbie and Huybers estimate that the deep Pacific cooling trend leads to a downward revision of heat absorbed over the 20th century by about 30 percent.

"Part of the heat needed to bring the ocean into equilibrium with an atmosphere having more greenhouse gases was apparently already present in the deep Pacific," said Huybers. "These findings increase the impetus for understanding the causes of the Medieval Warm Period and Little Ice Age as a way for better understanding modern warming trends."

This research was funded by the James E. and Barbara V. Moltz Fellowship and National Science Foundation grants OCE-1357121 and OCE-1558939.

This article has been provided by the courtesy of Woods Hole Oceanographic Institution.

Related Articles

Sea level rises along U.S. East Coast
Why is it faster in some places compared to others? Sea levels are rising globally from ocean warming and melting of land ice, but the seas aren't rising at the same rate everywhere. Sea levels have risen significantly faster in some U.S. East Coast regions compared to others. Posted on 23 Dec 2018
Coral Larvae use sound to find a home on the reef
Choosing a place to call home is one of the most consequential choices a coral can make Choosing a place to call home is one of the most consequential choices a coral can make. In the animal's larval stage, it floats freely in the ocean—but once it settles down, it anchors itself permanently to the rocky substrate of a reef Posted on 15 Dec 2018
Greenland is melting faster than ever
Melt 'off the charts' compared with past four centuries Surface melting across Greenland's mile-thick ice sheet began increasing in the mid-19th century and then ramped up dramatically during the 20th and early 21st centuries, showing no signs of abating, according to new research published Dec. 5, 2018 Posted on 8 Dec 2018
Flounder now tumor-free in Boston Harbor
More than three-quarters of the winter flounder caught in Boston Harbor In the late 1980s, more than three-quarters of the winter flounder caught in Boston Harbor—one of the most polluted harbors in America—showed signs of liver disease, many of them with cancerous tumors. Posted on 29 Nov 2018
Acidification may reduce sea scallop fisheries
Fishermen harvest more than $500 million worth of Atlantic sea scallops Each year, fishermen harvest more than $500 million worth of Atlantic sea scallops from the waters off the east coast of the United States. A new model created by scientists at the Woods Hole Oceanographic Institution (WHOI). Posted on 23 Sep 2018
NSF awards contract to WHOI led group
State-of-the-art marine facility continues delivering data and new insight The National Science Foundation (NSF) announced that it has awarded a coalition of academic and oceanographic research organizations a five-year, $220 million contract to operate and maintain the Ocean Observatories Initiative (OOI). Posted on 22 Sep 2018
Natural climate oscillations in North Atlantic
Warming global climate is melting the second largest ice sheet in the world Scientists have known for years that warming global climate is melting the Greenland Ice Sheet, the second largest ice sheet in the world. Posted on 19 Sep 2018
WHOI-Keck Real Time 3-D Acoustic Telescope
A first-of-its-kind acoustic telescope is under development A first-of-its-kind acoustic telescope is under development at the Woods Hole Oceanographic Institution (WHOI), funded by a $1 million grant from the W.M. Keck Foundation, that will permit researchers to map and study the underwater soundscape. Posted on 3 Sep 2018
Following the fresh water
Fingerprint of ancient abrupt climate change found in Arctic A research team led by Woods Hole Oceanographic Institution (WHOI) found the fingerprint of a massive flood of fresh water in the western Arctic, thought to be the cause of an ancient cold snap that began around 13,000 years ago. Posted on 15 Jul 2018
Geologic History of Ayeyawady River Delta mapped
Ayeyawady River delta in Myanmar is home to millions of people The Ayeyawady River delta in Myanmar is home to millions of people, and is a hub of agricultural activity. Unlike other large rivers across the world, however, the Ayeyawady has been relatively untouched by large infrastructure and dam projects Posted on 14 Jun 2018
Zhik 2018 Hyeres 728x90 BOTTOMMarine Resources BOTTOM