Please select your home edition
Edition
GJW Direct 2020

Corals light the way to a healthy partnership

by Andrew Baird 24 Jan 2019 06:42 UTC
Under some light conditions many corals emit a green fluorescence that attracts the symbionts necessary for a healthy life. © Andrew Baird

Corals know how to attract good company. New research finds that corals emit an enticing fluorescent green light that attracts the mobile microalgae, known as Symbiodinium, that are critical to the establishment of a healthy partnership.

The study led by researchers at Japan's National Institute for Basic Biology and the ARC Centre of Excellence for Coral Reef Studies at James Cook University (Coral CoE) sheds new light on the mechanism that brings corals and Symbiodinium together, for example, following a bleaching episode.

"Most reef corals can not function without Symbiodinium," said Shunichi Takahashi from the National Institute of Basic Biology.

"Following the back-to-back mass bleaching events, images of bleached white coral contrasted with healthy, vibrantly coloured coral were widespread. The key difference between the two is the abundance of Symbiodinum in the coral's tissue. Without sufficient Symbiodinum, which provide corals with nutrients via photosynthesis, the coral will starve."

"Thirty percent of corals receive their Symbiodinium from their parents, the other seventy percent, need a different mechanism" said co-author Professor Andrew Baird of Coral CoE.

But what brings the two organisms together? Corals are stationary creatures, however Symbiodinium can move freely through the water column.

The study reveals that corals have evolved a cunning ability to draw the Symbiodinium to them.

The researchers used the chalice coral, Echinophyllia aspera, to test whether the green fluorescent light emitted by corals under certain conditions can signal the Symbiodinium in the water column to move towards them: a process known as "positive phototaxis."

"Our research identifies a novel biological signaling tool that underlies the success of a relationship essential for healthy coral reef ecosystems, " said Prof Baird.

The paper "Green fluorescence from cnidarian hosts attracts symbiotic algae" is published in the journal Proceedings of the National Academy of Sciences.

Citation: Yusuke Aihara, Shinichiro Maruyam, Andrew H. Baird, Akira Iguchid, Shunichi Takahashi, and Jun Minagawa.

Green fluorescence from cnidarian hosts attracts symbiotic algae in Press at PNAS, DOI 10.1073/pnas.181225711.

Related Articles

Severe coral loss leaves reefs with larger fish
New research on the Great Barrier Reef finds this comes at a cost New research on the Great Barrier Reef associates severe coral loss with substantial increases in the size of large, long-living herbivorous fish. Posted on 12 May
Can coral reefs 'have it all'?
Some reefs can still thrive with plentiful fish stocks and high fish biodiversity Though coral reefs are in sharp decline across the world, scientists say some reefs can still thrive with plentiful fish stocks, high fish biodiversity, and well-preserved ecosystem functions. Posted on 28 Apr
Heatwaves risky for fish
Some fish are better than others at coping with heatwaves Scientists using sophisticated genetic analysis techniques have found that some fish are better than others at coping with heatwaves. Posted on 27 Mar
Coral disease risk factors revealed
Coral cancers are more common in reefs with fewer fish Researchers have identified key factors that increase the risk of diseases that threaten coral reefs - and their work could one day be used to predict and manage future outbreaks. Posted on 22 Feb
Coralline Algae resists ocean acidification
Coralline algae are vital not only to the survival of coral reefs but many ocean species Scientists say a type of algae crucial to the survival of coral reefs may be able to resist the impacts of ocean acidification caused by climate change. Posted on 25 Jan
Coral study prompts rethink of scientific theory
World-first study is challenging long-held assumptions about role of sunlight in coral biodiversity The research questions a classic theory that predicts coral biodiversity is highest in the shallowest waters where more energy is available in the form of sunlight. Posted on 6 Nov 2019
Clear goals but murky path to sustainability
International sustainability policies set clear goals for protecting ecosystems As biodiversity loss continues at an alarming rate across the globe a new study identifies what is needed to tackle the root causes of the problems. Posted on 6 Nov 2019
New study shows climate change is good investment
Scientists calling on world leaders to urgently accelerate efforts to tackle climate change. Almost every aspect of the environment and ecology is changing in response to global warming. Some of these changes will be profound, if not catastrophic, in the future. Posted on 23 Sep 2019
Actions to save coral reefs
A new, holistic approach to safeguarding coral reefs Scientists say bolder actions to protect coral reefs from the effects of global warming will benefit all ecosystems, including those on land. Posted on 20 Sep 2019
Marine heatwaves a bigger threat to coral reefs
With effects that go beyond coral bleaching New research reveals marine heatwaves are a much bigger threat to coral reefs than previously thought, with effects that go beyond coral bleaching. Posted on 22 Aug 2019
Grapefruit Graphics 2019 - FooterCyclops Marine 2020 - FOOTERNorth Sails 2019 - NSVictoryList - Footer