Please select your home edition
Edition
Hyde Sails 2022 One Design LEADERBOARD

Waters west of Europe drive ocean overturning circulation, key for regulating climate

by The Woods Hole Oceanographic Institution 3 Feb 2019 06:33 UTC
The R/V Neil Armstrong emerging from Prince Christian Sound, which connects western Greenland to eastern Greenland, during an Overturning in the Subpolar North Atlantic Program expedition © Kent Sheasley, Woods Hole Oceanographic Institution

The Atlantic meridional overturning circulation (MOC)a deep-ocean process that plays a critical role in regulating Earth's climate is primarily driven by cooling waters west of Europe, finds a new international study published Feb. 1 in Science.

In the Atlantic MOC, warm, salty, shallow waters are carried northward from the tropics by currents and wind, and then converted into colder, fresher, deep waters that return southward through the Iceland and Irminger basins. In a departure from the prevailing scientific view, the study shows that most of the conversion from warm to cold wateror 'overturning' and its month-to-month variabilityis occurring in regions between Greenland and Scotland, rather than in the Labrador Sea off Canada, as many past modeling studies have suggested.

Overturning variability in this northeastern section of the North Atlantic was seven times greater than in the Labrador Sea, and it accounted for 88 percent of the total variance documented across the entire North Atlantic over the 21-month study period.

These findings can help scientists better predict what changes might occur to the MOC and what the climate impacts of those changes will be, said Susan Lozier, the Ronie-Rochele Garcia-Johnson Professor of Earth and Ocean Sciences at Duke University's Nicholas School of the Environment and adjunct scientist at the Woods Hole Oceanographic Institution (WHOI).

"To aid predictions of climate in the years and decades ahead, we need to know where this deep overturning is currently taking place and what is causing it to vary," said Lozier, who led the observational study that produced the new data.

The Overturning in the Subpolar North Atlantic Program (OSNAP) kicked off in 2014 when an international team of oceanographers, including WHOI scientists Robert Pickart and Amy Bower, began deploying moored instruments as part of an ambitious large-scale observing system that would allow scientists for the first time to continuously measure the strength and pathways of ocean currents through the entire subpolar North Atlantic.

OSNAP, which is proposed to continue for 10 years and is funded in large part by the National Science Foundation, also includes the release of over 100 deep-drifting buoys to trace the pathways of the cold dense waters traveling southward near the sea floor. Much of the at-sea work required to put the observing system in place was carried out from the WHOI-operated research vessels Knorr (now retired) and Neil Armstrong.

"The weather at these latitudes in the North Atlantic can be nasty, even in summer, demanding highly-skilled ships' crews, technicians, engineers and scientists working hard, night and day, as one team," said Bower.

"Oftentimes the harsh weather systems required us to play cat and mouse with strong winds, high seas, and large numbers of icebergsall with a ship filled to the brim with gear," added Pickart.

Scientists from 16 research institutions from seven countries collaborated on the new study, the first published paper from the $32 million, five-year initial phase of OSNAP. The study contains data collected over a 21-month period from August 2014 to April 2016. The deep float data, which is still being processed, will shed light on the pathways of the cold, deep, dense water as it flows slowly toward the equator.

"We are expecting equally surprising results from the float data," Bower said. "There haven't been many measurements of current pathways in the deep ocean anywhere, and none at all of the deepest waters of the northern North Atlantic."

Primary funding came from the U.S. National Science Foundation's Physical Oceanography Program and the United Kingdom's Natural Environment Research Council. Additional funding came from the European Union 7th Framework Programme and Horizon 2020.

Co-authors hailed from Duke; the U.K.'s National Oceanography Centre; Woods Hole Oceanographic Institution; the Scottish Association for Marine Sciences; the Royal Netherlands Institute for Sea Research and Utrecht University; Memorial University in St. John's, Canada; GEOMAR Helmholtz Centre for Ocean Research in Kiel, Germany; and the Bedford Institute of Oceanography in Dartmouth, Canada.

This article has been provided by the courtesy of Woods Hole Oceanographic Institution.

Related Articles

Pakistan's 'Ocean of Water'
Interactions between Pacific and Indian Oceans influenced devastating monsoon The South Asian monsoon brings much-needed rain to the Indian subcontinent each summer. The monsoon typically lasts from mid-June to September. Posted on 3 Feb 2023
Palau's Rock Islands harbor heat-resistant corals
Finding could help reef managers to develop new defenses against ocean warming Ocean warming is driving an increase in the frequency and severity of marine heatwaves, causing untold damage to coral reefs. Posted on 24 Dec 2022
When will Antarctica's ice come crashing down?
Researchers challenge their own assumptions to improve sea-level rise predictions As increased warming in Antarctica causes glaciers to retreat and shed their increasingly-unstable shelves, towering walls of ice are left looming high above the sea. Posted on 20 Nov 2022
Can we use sound to build back reefs?
What does a healthy reef sound like? What does a healthy reef sound like? And can we use that knowledge to help save sick or endangered reefs? Posted on 13 Nov 2022
Five essential ocean-climate technologies
It's hard to overstate how profound the ocean's role is when it comes to climate change It's hard to overstate how profound the ocean's role is when it comes to climate change. It has absorbed more than 90 percent of the heat caused by greenhouse gasses since the Industrial Revolution. Posted on 13 Nov 2022
What happens to natural gas in the ocean?
Methane, the most abundant hydrocarbon in natural gas, is a potent greenhouse gas When news broke on September 26 that natural gas pipelines had ruptured under the Baltic Sea, the immediate-and appropriate-concern was the impact on the climate. Posted on 11 Oct 2022
How to study an underwater earthquake from shore
Lessons from a successful hybrid Sentry expedition A magnitude 6 earthquake along the Gofar Transform Fault in the eastern Pacific Ocean shook the seafloor in April 2020, just when a WHOI-based science team predicted. Posted on 31 Aug 2022
Seven ways you can be coral reef-safe
Lifestyle changes you can make to help corals in crisis Diving or snorkeling on a reef is your ticket to a dreamworld. Brilliant colors, fantastic shapes, and castle-like structures invite exploration, revealing bright flashes of fish and an infinite variety of life below the surface. Posted on 4 Jul 2022
World's largest kelp map launched
By Woods Hole Oceanographic Institution and collaborators Kelp forests provide myriad benefits to nature and people in oceans around the world. They form the backbone of the ecosystems in which they are found, providing habitat and food for thousands of species. Posted on 13 Apr 2022
Dissolving oil in a sunlit sea
Scientists working to understand a concept known as environmental fate The 2010 Deepwater Horizon oil spill was the largest marine oil spill in U.S. history. The disaster was caused by an explosion on the Deepwater Horizon oil rig, taking 11 lives and releasing nearly 210 million gallons of crude oil into the Gulf of Mexico. Posted on 20 Feb 2022
Cyclops Marine 2023 November - FOOTERHenri-Lloyd - For the ObsessedCrewsaver 2021 Safetyline FOOTER