Please select your home edition
Cyclops Marine 2020 - LEADERBOARD

Study finds no direct link between North Atlantic Ocean currents, sea level along New England Coast

by Woods Hole Oceanographic Institution 17 Jun 2019 12:43 UTC
Study finds no direct link between North Atlantic Ocean currents, sea level along New England Coast © Ethan Daniels, Shutterstock

A new study by the Woods Hole Oceanographic Institution (WHOI) clarifies what influence major currents in the North Atlantic have on sea level along the northeastern United States. The study, published June 13 in the journal Geophysical Research Letters, examined both the strength of the Atlantic Meridional Overturning Circulation (AMOC)—a conveyor belt of currents that move warmer waters north and cooler waters south in the Atlantic—and historical records of sea level in coastal New England.

"Scientists had previously noticed that if the AMOC is stronger in a given season or year, sea levels in the northeast U.S. go down. If the AMOC weakens, average sea levels rise considerably," says Chris Piecuch, a physical oceanographer at WHOI and lead author on the paper. "During the winter of 2009-2010, for example, we saw the AMOC weaken by 30 percent. At the same time, sea level in our region rose by six inches. That doesn't sound like a lot, but a half-foot of sea level rise, held for months, can have serious coastal impacts."

"But, it's been unclear whether those two things—coastal sea level and the AMOC—are linked by cause and effect," adds Piecuch. Although the study confirmed that AMOC intensity and sea level seem to change at the same time, it found that neither directly causes changes in the behavior of the other. Instead, both seem to be controlled simultaneously by variability in major weather patterns over the North Atlantic, such as the North Atlantic Oscillation (NAO).

"Changes in the NAO alter both AMOC and sea level separately," says Piecuch. "As the NAO changes, it affects the trade winds, which blow from the east across the tropical Atlantic. When the NAO is high, the trade winds are stronger than normal, which in turn strengthens AMOC. But at the same time, the westerly winds over New England are also stronger than usual. Together with unusually high air pressure on the northeast coast, this lowers the average sea level. It's wind and pressure that are driving both phenomena."

According to Piecuch, a study like this was not even possible until recently. For the past few decades, satellite imagery has given scientists a record of movement at the ocean's surface, but has been unable to detect currents below the surface. Starting in 2004, however, an international team of scientists began maintaining a chain of instruments that stretch across the Atlantic between Florida and Morocco. The instruments, which are collectively called the RAPID array, hold a variety of sensors that measure currents, salinity, and temperature. "RAPID doesn't resolve the details of every individual current along the way, but it does give us the sum total of the ocean's behavior, which is what the AMOC represents," Piecuch notes.

These findings are particularly important for residents along the northeast coast of the U.S., he adds. Existing climate models suggest sea levels will rise globally in the next century due to climate change, but that sea level rise on the New England coast will be greater than the global average. Scientists have traditionally assumed that the heighted future sea level rise in the northeast U.S. is inextricably tied to a weakening of the AMOC, which the climate models also predict. But, given the study's findings, that assumption might need to be revisited, Piecuch says. "The problem right now is that we only have about 13 years of AMOC data to work with. To get a better sense of how these two things relate to one another in the long term, we'll need to wait for a longer stretch of observational records to become available," he says.

Also collaborating on the study were Glen G. Gawarkiewicz and Jiayan Yang of WHOI; Sönke Dangendorf of Universität Siegen in Germany; and Christopher M. Little and Rui M. Ponte of Atmospheric and Environmental Research, Inc.

The work was supported by National Science Foundation awards OCE-1558966, OCE-1834739, and OCE-1805029; NASA contract NNH16CT01C; and the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists at the Woods Hole Oceanographic Institution.

This article has been provided by the courtesy of Woods Hole Oceanographic Institution.

Related Articles

The many lifetimes of plastics
How long plastics last in the environment? Many of us have seen informational posters at parks or aquariums specifying how long plastics bags, bottles, and other products last in the environment. Posted on 20 Jun
A win for both lobstermen and endangered whales
Fishing with less gear and a shorter season could make the U.S. lobster fishery more profitable A new study by researchers at Woods Hole Oceanographic Institution (WHOI) found that New England's historic lobster fishery may turn a higher profit by operating with less gear in the water and a shorter season. Posted on 31 May
What did scientists learn from deepwater horizon?
Major findings and technological advances Paper reviews major findings, technological advances that could help in next deep-sea spill. Ten years ago, a powerful explosion destroyed an oil rig in the Gulf of Mexico, killing 11 workers and injuring 17 others. Posted on 27 Apr
New study on rapidly changing Arctic Ocean
Shelf sediments, freshwater runoff from rivers brings more carbon, nutrients to North Pole A new study by researchers at WHOI and their international colleagues found that freshwater runoff from rivers and continental shelf sediments are bringing significant quantities of carbon and trace elements into parts of the Arctic Ocean. Posted on 10 Apr
Biological pump captures more carbon than expected
Ocean plays an essential role in capturing carbon from the atmosphere Every spring in the Northern Hemisphere, the ocean surface erupts in a massive bloom of phytoplankton. Like plants, these single-celled floating organisms use photosynthesis to turn light into energy, consuming carbon dioxide and releasing oxygen Posted on 9 Apr
For now, river deltas gain land worldwide
Delta areas worldwide have actually gained land in the past 30 years Researchers from Utrecht University in the Netherlands, Woods Hole Oceanographic Institution (WHOI), and colleagues found that delta areas worldwide have actually gained land in the past 30 years, despite river damming. Posted on 26 Jan
How microbes reflect the health of coral reefs
Microorganisms play important roles in the health and protection of coral reefs Microorganisms play important roles in the health and protection of coral reefs, yet exploring these connections can be difficult due to the lack of unspoiled reef systems throughout the global ocean. Posted on 22 Dec 2019
DISCO allows scientists to measure superoxide
Superoxide is a reactive chemical that is a byproduct within all photosynthesizing organisms Researchers at Woods Hole Oceanographic Institution (WHOI) successfully conceived and tested a portable device, DISCO, that performed the first in situ measurements of a highly reactive type of oxygen, known as superoxide Posted on 13 Dec 2019
Sunlight degrades polystyrene faster than expected
Sunlight can transform the polystyrene into CO2 A study published by researchers at WHOI shows that polystyrene, one of the world's most ubiquitous plastics, may degrade in decades or centuries when exposed to sunlight, rather than thousands of years as previously thought. Posted on 13 Oct 2019
How much of corals' nutrition comes from hunting?
Most of their nutrients come from microscopic algae living inside of them When it comes to feeding, corals have a few tricks up their sleeve. Most of their nutrients come from microscopic algae living inside of them, but if those algae aren't creating enough sustenance, corals can use their tentacles to grab and eat Posted on 19 Sep 2019
Cyclops Marine 2020 - FOOTERGrapefruit Graphics 2019 - FooterVaikobi 2019AUG - Footer 3