Please select your home edition
Edition
North Sails Performance 2023 - LEADERBOARD

Unmanned surface vehicles track marine mammals on extended foraging trips for the first time

by NOAA Fisheries 23 Feb 2020 16:24 UTC
A northern fur seal mother cares for her pup between foraging trips © NOAA Fisheries

Scientists successfully tested the feasibility of using Saildrones to follow individual fur seals over long distances while simultaneously assessing their prey and habitat.

A new study demonstrates that unmanned wind- and solar-powered surface vehicles can be valuable tools to track marine mammals over long distances and extended time periods.

"Collecting information on fine-scale relationships between predators, prey, and habitat in the open ocean is incredibly challenging and often cost prohibitive. Until recently, most scientists didn't consider it an option," said Carey Kuhn, the Alaska Fisheries Science Center scientist who led the study. "Our study shows that innovative technologies like unmanned surface vehicles now make that possible."

Saildrones followed individual northern fur seals over multiple days in the summer of 2016 and 2017 and up to 150 kilometers in the waters off Alaska. They collected information about prey and ocean conditions as the seals experienced them. The study marks the first time saildrones have been used to track a marine mammal.

Fine-Scale Relationships

Scientists track individual marine animals to gain detailed information about relationships between predators, their habitat, and their prey.

"Fine-scale relationships tell us what an individual seal experiences on a foraging trip, and what prey environment they are most successful in," said Kuhn. "A successful foraging trip means she can provide for her pup."

Unexplained Decline in Fur Seal Numbers

In recent years it has become increasingly important to understand what influences the foraging success of northern fur seals.

"Northern fur seals that breed in the Pribilof Islands have been declining for unknown reasons. The number of pups born on the islands is now at a 100-year low," Kuhn said. "Information about fine-scale relationships between fur seals and walleye pollock—their main prey—would help us see what role prey availability may have played in the decline."

A Robot to Go the Distance

Studies of fine-scale relationships between marine predators and prey have typically been conducted from research vessels. But vessel-based studies are costly and constrained by weather, daylight, and location. This limits the distance and time they can cover.

Unmanned vehicles are increasingly being used to supplement vessel surveys. Cost-efficient, infinitely patient, and unfazed by cold or dark, they can expand survey coverage. They can also reach areas that are shallow or otherwise inaccessible to large research vessels.

Autonomous underwater vehicles have been used to follow sharks, fish, and turtles. But these underwater robots are limited by battery time and could not measure prey abundance. To be comparable with traditional vessel-based surveys, unmanned vehicles need longer tracking durations and direct measurement of prey.

Enter saildrones. The wind- and solar-powered vehicles had already demonstrated their ability to carry out long-duration missions collecting oceanographic data and mapping fish distributions. Kuhn's coauthor Alex De Robertis and colleagues equipped saildrones with high-quality, low-power echosounders and deployed them for more than100 days.

De Robertis noted that the fur seals' walleye pollock prey are particularly well-suited for acoustic studies from saildrones.

"The instruments we use measure echoes, not fish. We have to be able to interpret what the saildrone sees from the point of view of fur seals. We are fortunate that echoes in this part of Alaska are dominated by a single species, walleye pollock, the major prey item for these seals." said De Robertis. "Another advantage of the saildrone is that it is small and quiet. Fish do not dive as they do when approached by survey vessels. So we know the true depth distribution of prey to compare with the diving behavior of seals."

Coauthor Calvin Mordy helped lead the development of the platform to collect high quality oceanic and atmospheric observations. He noted: "The saildrone is a unique interdisciplinary platform that permits us to quietly assess the habitat and prey field of northern fur seals."

Testing Feasibility

Kuhn's team set out to test the feasibility of using saildrones to collect information on interactions between fur seals, their habitat, and their prey.

They equipped adult female northern fur seals on St. Paul Island, in the Bering Sea, with satellite tags glued to their fur. These instruments would transmit each seal's location, which was used to guide the saildrone.

The goal was to follow each female for approximately two days while collecting data on oceanographic conditions and prey availability along her foraging path.

"There were a lot of potential difficulties," Kuhn said. "Since a saildrone's speed depends on environmental conditions, we didn't know how long it would take to catch up with its targeted seal. We didn't know how fur seal travel speeds would compare with saildrone speeds. Or how much of a delay there would be in the location transmission process from seal to satellite to saildrone."

Tracking Success

The saildrones successfully followed six individual fur seals over more than two days and as far as 150 kilometers.

"We were surprised at how well the saildrones were able to stay with the animals," Kuhn said. "It actually worked much better than expected."

The study provided information scientists need to better understand what fur seals need to forage successfully.

"It is so exciting to have the ability to measure the environment our fur seal is seeing while she's out feeding," said Kuhn. "These data give us insight into how the areas where fur seals spend time feeding are different from the areas they travel through without stopping."

The findings also have broader implications for research on marine predators.

"Our successful Saildrone missions highlight how innovative technologies can expand our research capabilities. We can follow animals farther while also getting a closer look at their environment," said Kuhn. "Innovations like unmanned surface vehicles will be valuable tools to help understand the environmental and biological features that drive the behavior and survival of marine species."

This research was a collaboration between NOAA Fisheries' Alaska Fisheries Science Center Marine Mammal Laboratory (Carey Kuhn, Jeremy Sterling) and Resource Assessment and Conservation Engineering Division (Alex De Robertis, Mike Levine); the University of Washington's Joint Institute for the Study of the Atmosphere and Ocean (Calvin Mordy, Heather Tabisola); NOAA's Pacific Marine Environmental Laboratory (Christian Meinig, Noah Lawrence-Slavas, Edward Cokelet); Saildrone, Inc. (Richard Jenkins, David Peacock); and Wildlife Computers, Inc. (Danny Vo).

Related Articles

Gray Whale population abundance
Eastern North Pacific Gray Whale population increases after observed decline To understand how the eastern North Paci?c gray whale population is responding to changes in the environment following its recovery from low numbers due to commercial whaling, we study changes in abundance over time. Posted on 5 Apr
New research reveals diversity of Killer Whales
Long viewed as one worldwide species, killer whale diversity now merits more Scientists have resolved one of the outstanding questions about one of the world's most recognizable creatures, identifying two well-known killer whales in the North Pacific Ocean as separate species. Posted on 31 Mar
Where the Leatherbacks Roam
Leatherbacks commonly swim from the South and Mid-Atlantic Bights during the warmer months Scientists find evidence of critical feeding grounds for endangered leatherback turtles along the U.S. Atlantic coast by studying movement behavior with satellite tags. Posted on 30 Mar
Meet Makana
One of the first Hawaiian Monk Seal Pups of 2024 Hawai'i Marine Animal Response partnered with Kahuku Elementary School to name the first Hawaiian monk seal pup of O'ahu in 2024. Posted on 23 Mar
Marine heatwaves reshape ecosystem
Heatwaves are becoming more frequent and intense in our oceans A new study highlights marine heatwaves' complex and cascading effects on marine ecosystems. While some species may benefit from these changes, others are likely to struggle. Posted on 20 Mar
California Current ecosystem shows resilience
It is facing a strong 2024 El Niño event The 2023-2024 California Current Ecosystem Status Report shows an abundance of forage fish and a productive system fueled by upwelling. Posted on 19 Mar
Some research takes a lifetime
Researchers keep track of Northern Elephant Seals using flipper tags Long-term research under Marine Mammal Protection Act scientific research permits provides insight into northern elephant seal moms and pups. Posted on 17 Mar
Making strides in marine mammal research
NOAA Fisheries and partners celebrate the 50th anniversary of the Endangered Species Act 2023 marked the 50th anniversary of the Endangered Species Act. Under this law, NOAA Fisheries is responsible for the conservation and recovery of more than 160 endangered and threatened marine species—including many marine mammals. Posted on 12 Feb
NOAA Fisheries and BOEM release joint strategy
Part of a larger interagency effort to promote recovery of endangered species Today, NOAA Fisheries and the Bureau of Ocean Energy Management (BOEM) released a final joint strategy to protect and promote the recovery of endangered North Atlantic right whales while responsibly developing offshore wind energy. Posted on 26 Jan
Documenting the Elusive North Pacific Right Whale
Dive in with the NOAA Fisheries Podcast North Atlantic right whales have justly gotten a lot of attention and news coverage due to their dwindling numbers and sightings along the busy East Coast. Posted on 13 Jan
Hyde Sails 2022 One Design FOOTERStoneways Marine 2021 - FOOTERNoble Marine 2022 SW - FOOTER