Please select your home edition
Edition
Pantaenius 2022 - SAIL & POWER 1 LEADERBOARD ROW

The ocean's 'biological pump' captures more carbon than expected

by Woods Hole Oceanographic Institution 9 Apr 2020 12:53 UTC
Marine chemist Ken Buesseler (right) deploys a sediment trap from the research vessel Roger Revelle during a 2018 expedition in the Gulf of Alaska. Buesseler's research focuses on how carbon moves through the ocean © Alyssa Santoro, Woods Hole Oceanographic Institution

Every spring in the Northern Hemisphere, the ocean surface erupts in a massive bloom of phytoplankton. Like plants, these single-celled floating organisms use photosynthesis to turn light into energy, consuming carbon dioxide and releasing oxygen in the process. When phytoplankton die or are eaten by zooplankton, the carbon-rich fragments sinks deeper into the ocean, where it is, in turn, eaten by other creatures or buried in sediments. This process is key to the "biological carbon pump," an important part of the global carbon cycle.

Scientists have long known that the ocean plays an essential role in capturing carbon from the atmosphere, but a new study from Woods Hole Oceanographic Institution (WHOI) shows that the efficiency of the ocean's "biological carbon pump" has been drastically underestimated, with implications for future climate assessments.

In a paper published April 6 in Proceedings of the National Academy of Sciences, WHOI geochemist Ken Buesseler and colleagues demonstrated that the depth of the sunlit area where photosynthesis occurs varies significantly throughout the ocean. This matters because the phytoplankton's ability to take up carbon depends on amount of sunlight that's able to penetrate the ocean's upper layer. By taking account of the depth of the euphotic, or sunlit zone, the authors found that about twice as much carbon sinks into the ocean per year than previously estimated.

The paper relies on previous studies of the carbon pump, including the authors' own. "If you look at the same data in a new way, you get a very different view of the ocean's role in processing carbon, hence its role in regulating climate," says Buesseler.

"Using the new metrics, we will be able to refine the models to not just tell us how the ocean looks today, but how it will look in the future," he adds. "Is the amount of carbon sinking in the ocean going up or down? That number affects the climate of the world we live in."

In the paper, Buesseler and his coauthors call on their fellow oceanographers to consider their data in context of the actual boundary of the euphotic zone.

"If we're going to call something a euphotic zone, we need to define that," he says. "So we're insisting on a more formal definition so that we can compare sites."

Rather than taking measurements at fixed depths, the authors used chlorophyll sensors —indicating the presence of phytoplankton— to rapidly assess the depth of the sunlit region. They also suggest using the signature from a naturally-occuring thorium isotope to estimate the rate at which carbon particles are sinking.

Buesseler is a principal investigator with WHOI's Ocean Twilight Zone project, which focuses on the little-understood but vastly important mid-ocean region. In a commentary published in Nature on March 31, Buesseler and colleagues call on the international marine research community to intensify their studies of the twilight zone during the upcoming United Nations Decade of the Ocean (2021-2030). Increased understanding of the twilight zone ecosystem and its role in regulating climate, the authors say, will lead to global policy to protect the area from exploitation.

Coauthors of the paper include: Phillip Boyd of University of Tasmania, Australia; Erin Black of Dalhousie University, Nova Scotia, and Lamont Doherty Earth Observatory, New York; and David Siegel, University of California, Santa Barbara.

This work was funded by: WHOI's Ocean Twilight Zone project; NASA as part of the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) program; the Ocean Frontier Institute at Dalhousie University; and the Australian Research Council.

For more information, please visit www.whoi.edu.

This article has been provided by the courtesy of Woods Hole Oceanographic Institution.

Related Articles

Pakistan's 'Ocean of Water'
Interactions between Pacific and Indian Oceans influenced devastating monsoon The South Asian monsoon brings much-needed rain to the Indian subcontinent each summer. The monsoon typically lasts from mid-June to September. Posted on 3 Feb 2023
Palau's Rock Islands harbor heat-resistant corals
Finding could help reef managers to develop new defenses against ocean warming Ocean warming is driving an increase in the frequency and severity of marine heatwaves, causing untold damage to coral reefs. Posted on 24 Dec 2022
When will Antarctica's ice come crashing down?
Researchers challenge their own assumptions to improve sea-level rise predictions As increased warming in Antarctica causes glaciers to retreat and shed their increasingly-unstable shelves, towering walls of ice are left looming high above the sea. Posted on 20 Nov 2022
Can we use sound to build back reefs?
What does a healthy reef sound like? What does a healthy reef sound like? And can we use that knowledge to help save sick or endangered reefs? Posted on 13 Nov 2022
Five essential ocean-climate technologies
It's hard to overstate how profound the ocean's role is when it comes to climate change It's hard to overstate how profound the ocean's role is when it comes to climate change. It has absorbed more than 90 percent of the heat caused by greenhouse gasses since the Industrial Revolution. Posted on 13 Nov 2022
What happens to natural gas in the ocean?
Methane, the most abundant hydrocarbon in natural gas, is a potent greenhouse gas When news broke on September 26 that natural gas pipelines had ruptured under the Baltic Sea, the immediate-and appropriate-concern was the impact on the climate. Posted on 11 Oct 2022
How to study an underwater earthquake from shore
Lessons from a successful hybrid Sentry expedition A magnitude 6 earthquake along the Gofar Transform Fault in the eastern Pacific Ocean shook the seafloor in April 2020, just when a WHOI-based science team predicted. Posted on 31 Aug 2022
Seven ways you can be coral reef-safe
Lifestyle changes you can make to help corals in crisis Diving or snorkeling on a reef is your ticket to a dreamworld. Brilliant colors, fantastic shapes, and castle-like structures invite exploration, revealing bright flashes of fish and an infinite variety of life below the surface. Posted on 4 Jul 2022
World's largest kelp map launched
By Woods Hole Oceanographic Institution and collaborators Kelp forests provide myriad benefits to nature and people in oceans around the world. They form the backbone of the ecosystems in which they are found, providing habitat and food for thousands of species. Posted on 13 Apr 2022
Dissolving oil in a sunlit sea
Scientists working to understand a concept known as environmental fate The 2010 Deepwater Horizon oil spill was the largest marine oil spill in U.S. history. The disaster was caused by an explosion on the Deepwater Horizon oil rig, taking 11 lives and releasing nearly 210 million gallons of crude oil into the Gulf of Mexico. Posted on 20 Feb 2022
Selden 2020 - FOOTER2024 fill-in (bottom)Crewsaver 2021 Safetyline FOOTER