Please select your home edition
Edition
March to end August 2024 affiliate link

Ocean acidification causing coral 'osteoporosis' on iconic reefs

by Woods Hole Oceanographic Institution 29 Aug 2020 21:23 UTC
WHOI scientist Anne Cohen (left) and MIT-WHOI Joint Program student Nathan Mollica extract core samples from a giant Porites coral in Risong Bay, Palau © Richard Brooks, Lightning Strike Media Productions, Palau

Scientists have long suspected that ocean acidification is affecting corals' ability to build their skeletons, but it has been challenging to isolate its effect from that of simultaneous warming ocean temperatures, which also influence coral growth. New research from the Woods Hole Oceanographic Institution (WHOI) reveals the distinct impact that ocean acidification is having on coral growth on some of the world's iconic reefs.

In a paper published Aug. 27, 2020, in the journal Geophysical Research Letters, researchers show a significant reduction in the density of coral skeleton along much of the Great Barrier Reef—the world's largest coral reef system—and also on two reefs in the South China Sea, which they attribute largely to the increasing acidity of the waters surrounding these reefs since 1950.

"This is the first unambiguous detection and attribution of ocean acidification's impact on coral growth," says lead author and WHOI scientist Weifu Guo. "Our study presents strong evidence that 20th century ocean acidification, exacerbated by reef biogeochemical processes, had measurable effects on the growth of a keystone reef-building coral species across the Great Barrier Reef and in the South China Sea. These effects will likely accelerate as ocean acidification progresses over the next several decades."

Roughly a third of global carbon dioxide emissions are absorbed by the ocean, causing an average 0.1 unit decline in seawater pH since the pre-industrial era. This phenomenon, known as ocean acidification, has led to a 20 percent decrease in the concentration of carbonate ions in seawater. Animals that rely on calcium carbonate to create their skeletons, such as corals, are at risk as ocean pH continues to decline. Ocean acidification targets the density of the skeleton, silently whittling away at the coral’s strength, much like osteoporosis weakens bones in humans.

"The corals aren't able to tell us what they're feeling, but we can see it in their skeletons," said Anne Cohen, a WHOI scientist and co-author of the study. "The problem is that corals really need the strength they get from their density, because that's what keeps reefs from breaking apart. The compounding effects of temperature, local stressors, and now ocean acidification will be devastating for many reefs."

In their investigation, Guo and his co-authors examined published data collected from the skeletons of Porites corals—a long-living, dome-shaped species found across the Indo-Pacific— combined with new three-dimensional CT scan images of Porites from reefs in the central Pacific Ocean. Using these skeletal archives, which date back to 1871, 1901, and 1978, respectively, the researchers established the corals' annual growth and density. They plugged this information, as well as historical temperature and seawater chemistry data from each reef, into a model to predict the corals' response to constant and changing environmental conditions.

The authors found that ocean acidification caused a significant decline in Porites skeletal density in the Great Barrier Reef (13 percent) and the South China Sea (7 percent), starting around 1950. Conversely, they found no impact of ocean acidification on the same types of corals in the Phoenix Islands and central Pacific, where the protected reefs are not as impacted by pollution, overfishing, runoff from land.

While carbon dioxide emissions are the largest driver of ocean acidification on a global scale, the authors point out that sewage and runoff from land can exacerbate the effect, causing even further reductions of seawater pH on nearby reefs. The authors attribute the declining skeletal density of corals on the Great Barrier Reef and South China Sea to the combined effects of ocean acidification and runoff. Conversely, reefs in marine protected areas of the central Pacific have so far been shielded from these impacts.

"This method really opens a new way to determine the impact of ocean acidification on reefs around the world," said Guo. "Then we can focus on the reef systems where we can potentially mitigate the local impacts and protect the reef."

Co-authors of the paper include Rohit Bokade (Northeastern University), Nathaniel Mollica (MIT-WHOI joint program), and Muriel Leung (University of Pennsylvania), as well as Russell Brainard of King Abdullah University of Science and Technology and formerly at the Coral Reef Ecosystem Division of the Pacific Islands Fisheries Science Center.

Funding for this research was provided by the National Science Foundation, the Robertson Foundation, The Tiffany & Co. Foundation, the Atlantic Donor Advised Fund, and WHOI's Investment in Science Fund.

This article has been provided by the courtesy of Woods Hole Oceanographic Institution.

Related Articles

Pakistan's 'Ocean of Water'
Interactions between Pacific and Indian Oceans influenced devastating monsoon The South Asian monsoon brings much-needed rain to the Indian subcontinent each summer. The monsoon typically lasts from mid-June to September. Posted on 3 Feb 2023
Palau's Rock Islands harbor heat-resistant corals
Finding could help reef managers to develop new defenses against ocean warming Ocean warming is driving an increase in the frequency and severity of marine heatwaves, causing untold damage to coral reefs. Posted on 24 Dec 2022
When will Antarctica's ice come crashing down?
Researchers challenge their own assumptions to improve sea-level rise predictions As increased warming in Antarctica causes glaciers to retreat and shed their increasingly-unstable shelves, towering walls of ice are left looming high above the sea. Posted on 20 Nov 2022
Can we use sound to build back reefs?
What does a healthy reef sound like? What does a healthy reef sound like? And can we use that knowledge to help save sick or endangered reefs? Posted on 13 Nov 2022
Five essential ocean-climate technologies
It's hard to overstate how profound the ocean's role is when it comes to climate change It's hard to overstate how profound the ocean's role is when it comes to climate change. It has absorbed more than 90 percent of the heat caused by greenhouse gasses since the Industrial Revolution. Posted on 13 Nov 2022
What happens to natural gas in the ocean?
Methane, the most abundant hydrocarbon in natural gas, is a potent greenhouse gas When news broke on September 26 that natural gas pipelines had ruptured under the Baltic Sea, the immediate-and appropriate-concern was the impact on the climate. Posted on 11 Oct 2022
How to study an underwater earthquake from shore
Lessons from a successful hybrid Sentry expedition A magnitude 6 earthquake along the Gofar Transform Fault in the eastern Pacific Ocean shook the seafloor in April 2020, just when a WHOI-based science team predicted. Posted on 31 Aug 2022
Seven ways you can be coral reef-safe
Lifestyle changes you can make to help corals in crisis Diving or snorkeling on a reef is your ticket to a dreamworld. Brilliant colors, fantastic shapes, and castle-like structures invite exploration, revealing bright flashes of fish and an infinite variety of life below the surface. Posted on 4 Jul 2022
World's largest kelp map launched
By Woods Hole Oceanographic Institution and collaborators Kelp forests provide myriad benefits to nature and people in oceans around the world. They form the backbone of the ecosystems in which they are found, providing habitat and food for thousands of species. Posted on 13 Apr 2022
Dissolving oil in a sunlit sea
Scientists working to understand a concept known as environmental fate The 2010 Deepwater Horizon oil spill was the largest marine oil spill in U.S. history. The disaster was caused by an explosion on the Deepwater Horizon oil rig, taking 11 lives and releasing nearly 210 million gallons of crude oil into the Gulf of Mexico. Posted on 20 Feb 2022
Marine Products Direct 2023 - Calypso FOOTERJ Composites J/99Cure Marine - Cure 55 - FOOTER