Please select your home edition
Edition
Selden 2020 - LEADERBOARD

Insight from sports medicine leads to discovery about mussels

by NOAA Fisheries 6 Oct 2020 10:00 UTC
Postdoctoral researcher Susanne Vogeler (front left), Lucie-Liane Duchesne (back left) and Microbiologist Diane Kapareiko (right) study mussel feeding rates in the field © NOAA Fisheries

Shannon Meseck, a NOAA Fisheries research chemist and marathon runner, was initially interested in how ultra-runners can tolerate higher levels of carbon dioxide than non-athletes.

A chance conversation with a medical doctor about ciliated cells in the human lung turned on a light bulb in her head. Could similarities between the function of these cells in humans and in blue mussels explain the mussels' response to increasing acidification in the ocean?

Blue mussels, one of the mollusks Meseck studies, are economically and environmentally important filter-feeding bivalves. Like other bivalves, they use their gills for feeding and respiration. Gill cilia—microscopic, hair-like structures—create and control the current that allows water and food to flow over the gills. The cilia also help capture and sort food particles.

Similar ciliated cells in the human lung have receptors that sense the environment, including carbon dioxide concentration. They signal responses that can include changes in cilia beat frequency. Ultra-runners' lungs are very efficient at this. They can tolerate higher levels of carbon dioxide in the body than non-athletes, and don't get "winded" as quickly or for as long.

What if, thought Meseck, the increased carbon dioxide characteristic of ocean acidification also inhibited shellfish cilia? Feeding and respiration would also be inhibited. This "what if" question led to a study conducted by the NOAA Northeast Fisheries Science Center's laboratory in Milford, Connecticut.

This study may be the first to show that shellfish gill cilia slow down with increasing dissolved carbon dioxide. The results confirm that elevated carbon dioxide concentration reduces feeding rates of blue mussels. Further, the researchers found evidence that slowing the cilia beat frequency—how often they twitch and move water—causes these decreased feeding rates. This is similar to what can happen in human lungs. These findings are important to understanding how ocean acidification affects shellfish and marine ecosystems. The study appeared in Ecological Indicators.

What happens to mussels when there's too much carbon dioxide?

Reduced feeding and filtration have important implications for energy and growth in blue mussels, as well as ecosystem level effects. "Bivalve filtration is an ecosystem service, and how ocean acidification may be affecting that must be better understood," said Meseck.

As atmospheric carbon dioxide concentration increases, the ocean is absorbing approximately 30 percent of it, making the water more acidic. In the Northeastern United States, dissolved carbon dioxide in seawater increased 2.5 percent from 2007 to 2015.

Researchers measured the feeding rates of mussels in low and high carbon dioxide conditions in a field experiment in Milford Harbor. They used a biodeposition method developed by other Milford researchers. For comparison, a similar experiment was conducted in the laboratory, exposing blue mussels to two different carbon dioxide concentrations using an experimental delivery system.

In both the field and laboratory experiments, the volume of water that the mussels filtered over time was lower at higher carbon dioxide levels and higher at lower levels. Mussels in the higher carbon dioxide conditions had significantly lower filtration rates and efficiency in selecting food particles.

The team used a high-speed digital video imaging system with software used in biomedical research to measure cilia beat frequency. They found beat frequency decreased as carbon dioxide concentration increased.

Laboratory Technician Melissa Krisak explained, "It is amazing how often you find great tools from the medical community to help answer questions about marine animals."

The study was funded by the NOAA Office of Aquaculture and NOAA Ocean Acidification Program.

For more information, please contact .

Related Articles

Gray Whale population abundance
Eastern North Pacific Gray Whale population increases after observed decline To understand how the eastern North Paci?c gray whale population is responding to changes in the environment following its recovery from low numbers due to commercial whaling, we study changes in abundance over time. Posted on 5 Apr
New research reveals diversity of Killer Whales
Long viewed as one worldwide species, killer whale diversity now merits more Scientists have resolved one of the outstanding questions about one of the world's most recognizable creatures, identifying two well-known killer whales in the North Pacific Ocean as separate species. Posted on 31 Mar
Where the Leatherbacks Roam
Leatherbacks commonly swim from the South and Mid-Atlantic Bights during the warmer months Scientists find evidence of critical feeding grounds for endangered leatherback turtles along the U.S. Atlantic coast by studying movement behavior with satellite tags. Posted on 30 Mar
Meet Makana
One of the first Hawaiian Monk Seal Pups of 2024 Hawai'i Marine Animal Response partnered with Kahuku Elementary School to name the first Hawaiian monk seal pup of O'ahu in 2024. Posted on 23 Mar
Marine heatwaves reshape ecosystem
Heatwaves are becoming more frequent and intense in our oceans A new study highlights marine heatwaves' complex and cascading effects on marine ecosystems. While some species may benefit from these changes, others are likely to struggle. Posted on 20 Mar
California Current ecosystem shows resilience
It is facing a strong 2024 El Niño event The 2023-2024 California Current Ecosystem Status Report shows an abundance of forage fish and a productive system fueled by upwelling. Posted on 19 Mar
Some research takes a lifetime
Researchers keep track of Northern Elephant Seals using flipper tags Long-term research under Marine Mammal Protection Act scientific research permits provides insight into northern elephant seal moms and pups. Posted on 17 Mar
Making strides in marine mammal research
NOAA Fisheries and partners celebrate the 50th anniversary of the Endangered Species Act 2023 marked the 50th anniversary of the Endangered Species Act. Under this law, NOAA Fisheries is responsible for the conservation and recovery of more than 160 endangered and threatened marine species—including many marine mammals. Posted on 12 Feb
NOAA Fisheries and BOEM release joint strategy
Part of a larger interagency effort to promote recovery of endangered species Today, NOAA Fisheries and the Bureau of Ocean Energy Management (BOEM) released a final joint strategy to protect and promote the recovery of endangered North Atlantic right whales while responsibly developing offshore wind energy. Posted on 26 Jan
Documenting the Elusive North Pacific Right Whale
Dive in with the NOAA Fisheries Podcast North Atlantic right whales have justly gotten a lot of attention and news coverage due to their dwindling numbers and sightings along the busy East Coast. Posted on 13 Jan
Marine Products Direct 2023 - Calypso FOOTERPantaenius 2022 - SAIL FOOTER - ROWNoble Marine 2022 SW - FOOTER