Please select your home edition
Edition
Vaikobi 2019AUG - Leaderboard 3

Extinctions linked to new assemblages of species

by Melissa Lyne 12 Oct 08:26 UTC
A huge pile of dead branching Acropora corals in the foreground and the few remaining live corals are massive Porites (centre and far right in photo). © George Roff

Scientists have found that as the world undergoes profound environmental change, identifying and protecting 'novel' communities of species can help prevent extinctions within vulnerable ecosystems.

Professor John Pandolfi and Dr Timothy Staples from the ARC Centre of Excellence for Coral Reef Studies at The University of Queensland (CoralCoE at UQ) are the lead authors of a new study in Science that looked at how combinations of plankton species changed across the world's marine ecosystems in the past 66 million years. From this, their team developed a world first method to detect 'novel' communities of species across all ecosystems.

"A novel ecological community is one with combinations of species that are different to any past observations from that site," Prof Pandolfi said. "These different species combinations can be due to new species arriving in the community, existing species leaving, or species becoming rarer or more common."

"We found that when novel communities formed, existing species were twice as likely to disappear from the community permanently, representing a 'local' extinction."

"Species in the novel community were also more likely to be new arrivals that had never been observed in the community before."

An example of a modern novel community is the coral reefs of the Caribbean, where the two once dominant species of branching coral are now rare. Those reefs are now home to new, or novel, communities of corals. The loss of the branching corals is due to the impacts of overfishing, changes in water quality, and climate change—resulting in new configurations of coral species within the Caribbean reef communities. And the shift means the benefits of the reef are now different: different species means different inhabitants and functions.

"The challenge is to manage at risk or vulnerable areas like this where novel communities exist, or where they're in the process of forming," Prof Pandolfi said.

"To do this we need to understand the changes in species composition we see in novel communities, as well as what is driving these changes. To achieve these goals, we need to be able to reliably identify when a novel community has emerged."

The study outlines the first standardised, quantitative methodology for determining the existence of novel ecological communities. The researchers used a database of marine plankton over millions of years, but the methodology was designed to be applied more generally.

"We came up with a measure of novelty that can be used with community data from any time scale, organism or ecosystem, so comparative approaches to the study of novelty are now possible," Dr Staples said. "In this study, we applied our methodology to the past 66 million years, but it would work just as well on much shorter time frames."

The researchers examined the marine plankton record using a global set of microfossil data from deep sea drilling cores— the NSB marine microfossil database, created and run by the Museum für Naturkunde in Berlin. By incorporating updated taxonomy and age models they built community data for species across geological time.

Prof Pandolfi said while novelty was rare, extinction was an important component. And after novel communities emerged, subsequent communities were more likely to develop into yet other novel states.

"Novelty begets novelty," Prof Pandolfi said. "And the likelihood of extinction was higher when novel communities emerged."

He said the pressures that cause communities to become novel in the first place need to be relieved. "Otherwise we may end up with cascading novelty, where the emergence of novel communities drives further novelty, including the loss of existing, native, species."

Prof Pandolfi says this means when a novel community is identified it needs attention and effective preventive management. He also says future studies need to identify novel communities within vulnerable ecosystems, such as the Great Barrier Reef. "At the end of the day that's where we want to go to test this," he said.

Though the time frame of evolutionary change is generally much slower than the timeframe of change currently occurring on the Great Barrier Reef, there are signs that novelty communities may be emerging there. The assemblage of corals on the reef are not what they were five or ten years ago.

"Our novelty framework is equally applicable to investigate the Great Barrier Reef at this ecological scale," Dr Staples said.

"Modern novel ecological communities may need to be managed effectively to prevent the propagation of subsequent novel communities, because of the associated risk of increased extinction," Prof Pandolfi said.

"We can't just throw in the towel and let those ecosystems degrade, we need to arrest this progression."

Paper: Pandolfi J, Staples T, Kiessling W. (2020). 'Increased extinction in the emergence of novel ecological communities'. Science. DOI: 10.1126/science.abb3996.

Related Articles

Marine reserves enhance fish populations
Portfolio of protected areas within marine parks secure sustainable fish populations Scientists say a 'portfolio' of protected areas within marine parks such as the Great Barrier Reef can help secure sustainable fish populations. Posted on 5 Oct
DNA unlocks a new understanding of coral
Scientists developed a new genetic tool to save coral reefs Scientists have developed a new genetic tool that can help them better understand and ultimately work to save coral reefs. Posted on 19 Sep
The hidden life of 'dead' coral reefs
New tech uncovers that coral rubble can still sustain life A new study suggests 'dead' coral rubble can still sustain life, with a large number of tiny animals hidden and living amongst the ruins. Posted on 6 Sep
Nooks, crannies and critters
A new way to measure the complexity of the world's habitats Researchers have discovered a new way to measure the complexity of the world's habitats - a crucial factor as environments across the globe face extraordinary change. Posted on 29 Aug
Sharks almost gone from many reefs
Finding of a massive global study of the world's reefs A massive global study of the world's reefs has found sharks are 'functionally extinct' on nearly one in five of the reefs surveyed. Posted on 25 Jul
Governments resist World Heritage 'in Danger' list
World Heritage sites represent both natural and cultural heritage for global humanity A study published this week found national governments repeatedly resisted the placement of 41 UNESCO World Heritage sites - including the Great Barrier Reef - on the World Heritage in Danger list. Posted on 24 Jul
Life in the shallows becomes trap for baby sharks
Sharks with a greater tolerance for higher temperatures had greater tolerance for low oxygen levels Scientists can now explain how baby reef sharks tolerate living in the sometimes-extreme environments of their nurseries—but, they also say these habitats face an uncertain future which may leave newborn sharks 'trapped'. Posted on 24 Jul
Big vegetarians of the reef drive fish evolution
More than 6,000 fish species live on coral reefs across the globe A new study reveals the diets of reef fish dictate how fast different species evolve. The breakthrough adds another piece to the fascinating evolutionary puzzle of coral reefs and the fishes that live on them. Posted on 3 Jun
Severe coral loss leaves reefs with larger fish
New research on the Great Barrier Reef finds this comes at a cost New research on the Great Barrier Reef associates severe coral loss with substantial increases in the size of large, long-living herbivorous fish. Posted on 12 May
Can coral reefs 'have it all'?
Some reefs can still thrive with plentiful fish stocks and high fish biodiversity Though coral reefs are in sharp decline across the world, scientists say some reefs can still thrive with plentiful fish stocks, high fish biodiversity, and well-preserved ecosystem functions. Posted on 28 Apr
Upffront 2020 Foredeck Club SW FOOTERNorth Sails 2019 - NSVictoryList - FooterHighfield Boats - Sailing - FOOTER