Please select your home edition
Edition
Sailing Holidays 2019 - TOP

Fussy fish can have their coral, and eat it too

by Melissa Lyne 17 Jul 23:32 UTC
Butterflyfish (Chaetodon baronessa). © Klaus Stiefel under CC 2.0

Being a fussy eater is a problem for reef fish who seek refuge from climate change on deeper reefs. But, scientists discovered, the coral that these fussy fish eat can support them.

The study was led by Dr Chancey MacDonald at the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at James Cook University (JCU).

Dr MacDonald said it's increasingly difficult for species to deal with rapidly changing environments across the globe. He says while some species are likely to find refuges in marginal environments, survival may be difficult. Especially if they're fussy eaters.

"Some animals are likely to be pushed close to the borders of their environmental range, where living will be more difficult," Dr MacDonald said.

"On coral reefs this could mean deeper waters for fish, where you'd expect them to experience a reduced quantity and quality of their preferred foods," he said.

"However, we found that fish who are fussy about the corals they feed on can continue to thrive in deeper reef waters if their prey engage in a less 'precious' approach to what they themselves eat."

Although the corals some fish preferred to eat were sparse at depth, the team found the energy content of these corals remained constant, as they adapted their diet to rely less on sunlight and include more plankton.

Coral bleaching, large storms and other destructive events are increasing on tropical reefs.

"Shallow-water coral habitats are rapidly degrading," co-author Dr Tom Bridge, also from Coral CoE at JCU, said.

"And the deeper coral habitats, which may act as a refuge for some reef fish species, have less light available," Dr Bridge said.

"Corals mostly depend on light as an energy source to survive, which means there are less corals at depth."

Fish that eat coral, such as the Triangle and Eight-Band butterflyfish, can live on deeper reefs by either feeding more on their usual resource—or by adapting their diets.

Triangle butterflyfish are fussy eaters (dietary specialists). The Eight-band Butterflyfish are not fussy eaters (dietary generalists). The study compared the diets of the two from shallow to deep depths.

The researchers found that while overall feeding rates did not change with depth, the Triangle Butterflyfish—a dietary specialist—fed more selectively on their preferred corals, which are sparser at greater depths than in shallow waters.

In contrast, the dietary flexibility of the Eight-band Butterflyfish increased with depth as the amount of different coral types changed.

"These observations were compared with lab investigations of light-related changes in the energy content of corals," Dr MacDonald said.

"Surprisingly, the energy content of the corals that the Triangle butterflyfish preferred to feed on did not decline with depth as expected," he said.

"However, the pathways through which carbon passed from the corals to the fish did."

"Our results suggest that the expected declines in the quality of deeper corals as prey for fish are buffered by increased plankton intake by the corals via their polyps," co-author Prof Geoff Jones, also from Coral CoE at JCU, said.

"This means the corals adjust to the lack of light at depth, as they usually rely on energy from their internal photosynthetic zooxanthellae," Prof Jones said.

Dr MacDonald said the increase in plankton uptake was as much as 20 percent.

"This may be why we see healthy members of these fussy fish in both deep and shallow waters," he said.

"Climate change and other disturbances have increasing impacts on the habitats and compositions of coral reefs."

"Our study shines a light on the importance of the versatile relationship between species as they seek refuge on the edges of their environmental range—even if one species is fussier than another."

Paper: MacDonald C, Bridge T, McMahon K, Jones G (2019). Functional Ecology. 'Alternative functional strategies and altered carbon pathways facilitate broad depth ranges in coral-obligate reef fishes'. DOI: 10.1111/1365-2435.13400.

Related Articles

Coral study prompts rethink of scientific theory
World-first study is challenging long-held assumptions about role of sunlight in coral biodiversity The research questions a classic theory that predicts coral biodiversity is highest in the shallowest waters where more energy is available in the form of sunlight. Posted on 6 Nov
Clear goals but murky path to sustainability
International sustainability policies set clear goals for protecting ecosystems As biodiversity loss continues at an alarming rate across the globe a new study identifies what is needed to tackle the root causes of the problems. Posted on 6 Nov
New study shows climate change is good investment
Scientists calling on world leaders to urgently accelerate efforts to tackle climate change. Almost every aspect of the environment and ecology is changing in response to global warming. Some of these changes will be profound, if not catastrophic, in the future. Posted on 23 Sep
Actions to save coral reefs
A new, holistic approach to safeguarding coral reefs Scientists say bolder actions to protect coral reefs from the effects of global warming will benefit all ecosystems, including those on land. Posted on 20 Sep
Marine heatwaves a bigger threat to coral reefs
With effects that go beyond coral bleaching New research reveals marine heatwaves are a much bigger threat to coral reefs than previously thought, with effects that go beyond coral bleaching. Posted on 22 Aug
Climate vulnerability of World Heritage properties
Australian scientists have created a world-first tool Australian scientists have created a world-first tool that can systematically assess climate change risks to all types of World Heritage properties: marine and terrestrial, natural and cultural. Posted on 7 Jul
Cardinalfish caught sneaking a bit on the side
The male fish of this species carries the eggs in his mouth until they are ready to hatch Scientists have revealed the torrid, adulterous love lives of the mouth-brooding cardinalfish, with cuckoldry going hand-in-hand with cannibalism of the young. Posted on 15 Jun
Tiny fish live fast, die young
Smallest tenants may be vital to the health of reef systems New research has revealed that the short lives and violent deaths of some of coral reefs' smallest tenants may be vital to the health of reef systems, including the iconic Great Barrier Reef. Posted on 30 May
Breaking bread with rivals leads to more fish
Cooperation is key to most successful endeavours Dr Michele Barnes, a senior research fellow from the ARC Centre of Excellence for Coral Reef Studies, is the lead author of study published today that looks at the relationships between competing fishers, the fish species they hunt, and their local reefs. Posted on 7 May
Corals light the way to a healthy partnership
Corals know how to attract good company Corals know how to attract good company. New research finds that corals emit an enticing fluorescent green light that attracts the mobile microalgae, known as Symbiodinium, that are critical to the establishment of a healthy partnership. Posted on 24 Jan
North Sails 2019 - NSVictoryList - FooterGrapefruit Graphics 2019 - FooterMarine Resources 2019 - Footer