Please select your home edition
Edition
North Sails Performance 2023 - LEADERBOARD

Nooks, crannies and critters

by Melissa Lyne 29 Aug 2020 06:23 UTC
More complex habitats tend to contain more species. In this image, reef fishes and brittlestars use corals as habitat and for protection © Damaris Torres-Pulliza

Researchers have discovered a new way to measure the complexity of the world's habitats - a crucial factor as environments across the globe face extraordinary change.

The study was led by Damaris Torres-Pulliza, a PhD candidate at the University of Hawai'i at the Hawai'i Institute of Marine Biology (HIMB). Ms Torres-Pulliza and a team of ecologists and engineers, including from the ARC Centre of Excellence for Coral Reef Studies at James Cook University (Coral CoE at JCU), developed a relatively simple way to standardise how habitat complexity is measured.

The researchers say habitats range from the abyssal trenches to the tops of mountains, from coral reefs to tundra. These can be relatively simple, flat surfaces to highly complex three-dimensional structures—a concrete driveway to an old brick-pile in the backyard, respectively.

The researchers studied the coral reefs encircling Lizard Island, on the Great Barrier Reef, using a mix of robots and underwater cameras to measure their three-dimensional structure.

Associate Professor Mia Hoogenboom from Coral CoE at JCU said places with lots of nooks and crannies contain lots of living things.

"We spent many hours underwater counting and identifying nearly 10,000 corals found on the 3D maps," said Dr Hoogenboom.

"The new method we developed can be used in both marine and terrestrial environments, allowing us to understand how complexity and biodiversity are related to each other in all kinds of habitats," she said.

Dr Hoogenboom says complex habitats tend to contain more biodiversity, both in terms of more individuals and more species. This relationship is important, because it highlights a relatively simple mechanism by which to manipulate biodiversity. If habitat complexity decreases, one would expect biodiversity to decrease.

Dr Joshua Madin, an associate researcher at HIMB, says habitats are characterised by three factors: rugosity, fractal dimension and height range.

"If you think of your backyard brick-pile, rugosity tells you the amount of surface area there is for critters to live on; fractal dimension tells how many critters of different sizes can fit in among the bricks, and; height range sets an upper limit to critter size," Dr Madin said. "You won't find an elephant in your bricks, right?"

The analysis suggests only two of the three measurements are needed to characterise the structure of a habitat. This means ecologists can pick the two aspects of complexity that are easiest to measure and will automatically know the third-similar to calculating the third angle of a triangle if two angles are already known.

The theoretical breakthrough means scientists can back-calculate a richer picture of habitat complexity from previous studies and compare habitat complexity among different ecosystems.

"We found that using the three metrics together dramatically improves our ability to predict the distribution of biodiversity. This helps us understand how the structure of a place affects who lives there," said Dr Maria Dornelas of the University of St Andrews.

Though the work is new and currently only applied to coral reefs, the researchers hope that their new theory might become the backbone of research into the relationships between habitat complexity and biodiversity in all ecosystems, both underwater and on land.

Paper

Torres-Pulliza D, Dornelas M, Pizarro O, Bewley M, Blowes S, Boutros N, Brambilla V, Chase T, Frank G, Friedman A, Hoogenboom M, Williams S, Zawada K, Madin J. (2020) 'A geometric basis for surface habitat complexity and biodiversity'. Nature Ecology and Evolution. DOI: 10.1038/s41559-020-1281-8.

Related Articles

DNA reveals the past and future of coral reefs
New DNA techniques are being used to understand how coral reacted to the end of the last ice age New DNA techniques are being used to understand how coral reacted to the end of the last ice age in order to better predict how they will cope with current changes to the climate. Posted on 22 Oct 2022
The double burden of climate change
A new study on the effects of climate change in five tropical countries A new study on the effects of climate change in five tropical countries has found fisheries are in more trouble than agriculture, and poor people are in the most danger. Posted on 9 Jul 2022
Fade to grey
Fish communities become duller as coral reefs die James Cook University researchers have found brightly coloured fish are becoming increasingly rare as coral declines, with the phenomenon likely to get worse in the future. Posted on 26 Mar 2022
Concerns as development threatens reefs
A stark warning about the impacts of urban growth on the world's coral reefs A new study has delivered a stark warning about the impacts of urban growth on the world's coral reefs. Posted on 10 Mar 2022
New data shows coral everywhere face catastrophe
The refuges will provide almost no escape Alarming new research shows global warming of 1.5 degreesC relative to pre-industrial levels will be catastrophic for almost all coral reefs - including those once thought of as refuges. Posted on 4 Feb 2022
Coral identity crisis
A new way to distinguish and identify coral species Researchers have found a new way to distinguish and identify coral species—providing crucial information to help manage coral reefs in a warming world. Posted on 30 Nov 2021
Corals roll with the punches
Corals may be able to cope with climate change in the coming decades A new study suggests corals may be able to cope with climate change in the coming decades better than previously thought- but will still struggle with ever-faster rates of climate change. Posted on 8 Sep 2021
Measuring conservation in a way that counts
The term 'save' in conservation needs to be better defined A new study raises questions on whether current conservation science and policy for protected areas could be saving more biodiversity—with political and economic expediency often having taken precedence in the past. Posted on 30 Jul 2021
More 'fairness' needed in conservation
A new approach is needed if protected areas are to be effective New research shows what is often assumed to be 'fair' in conservation practice may not be considered so by the very people most affected by it—and a new approach is needed if protected areas are to be effective. Posted on 12 Jun 2021
Time running out to save coral reefs
A window of opportunity to save the world's coral reefs - but time is running out New research on the growth rates of coral reefs shows there is still a window of opportunity to save the world's coral reefs - but time is running out. Posted on 13 May 2021
Henri-Lloyd - For the ObsessedPantaenius 2022 - SAIL & POWER 2 FOOTER ROWCyclops Marine 2023 November - FOOTER