Please select your home edition
Edition
North Sails Performance 2023 - LEADERBOARD

How will changing ocean chemistry affect the shellfish we eat?

by NOAA Fisheries 12 Apr 2019 12:00 UTC
Oyster shell observed during acidification experiment. Lowest pH treatment has lighter weight shells and translucent areas © NOAA Fisheries

Most of us have heard that the climate is changing as our atmosphere deals with a massive increase in carbon dioxide emissions. While climate change gets most of the publicity, did you know that the ocean absorbs about a quarter of that extra carbon dioxide?

There are pros and cons to this: the ocean provides a buffer without which our climate would warm more rapidly, but the process of absorbing carbon dioxide is making the ocean less basic and more acidic. Ocean acidification is happening in places most of us don't regularly visit, but it has the potential to radically change conditions for the sea life we know and rely on for sustenance.

The pH scale measures how acidic a substance is, ranging from 0 to 14. The lower the number, the more acidic the substance. pH 7 is neutral, neither acidic or basic. Substances below pH 7 are considered acidic, while substances above pH 7 are considered basic (or alkaline). The scale is logarithmic, meaning that as you go down by one number, a substance is actually ten times more acidic than the next highest value, for example, a pH of 5 is ten times more acidic than a pH of 6. It helps to consider examples from everyday life: Lemon juice? Very acidic, with a pH of about 2. Milk? Just under 7, which is neutral. Oven cleaner? Very basic at pH 13.

Typical Long Island Sound water has a pH of around 7.8, while sea water in the open ocean is around 8.1. Scientists estimate that the pH of surface ocean water has dropped by 30% since the beginning of the Industrial Revolution. Learn more about ocean acidification

Scientists at the NEFSC Milford Lab are shining some light on ocean acidification by examining how a more acidic ocean affects something we care about the oysters, surfclams, and scallops that we eat.

Changing ocean chemistry could have a variety of consequences for shellfish. It could hinder shell-building, as the calcium carbonate building blocks shellfish need to make their shells become less abundant and the surrounding seawater gets more corrosive. In addition, their metabolism, including feeding and respiration rates, could be affected.

The Experiment: Ocean Acidification and Oysters

As the winter holidays approached in 2018, the Milford Lab was abuzz with activity as scientists took samples from two experimental systems they have designed to test what happens to shellfish when the water they live in becomes more acidic. The subjects of this first experiment were seven-month-old "seed" oysters, a term used in aquaculture to describe young oysters that are ready to be transplanted from a hatchery into a natural environment. Tests on young surfclams will get under way in April 2019.

For ten weeks in November and December 2018, Milford scientists measured feeding, growth, and respiration in two groups of oysters, fed and unfed, under three different pH levels: typical Long Island Sound water at 7.8, 7.5, and a low pH treatment of 7.3.

The fed experiments allowed researchers to study the effects of pH on filtration and feeding. The unfed experiments (food - in this case, algae, was filtered out of the water before it reached the oysters) allowed researchers to measure the effects of pH on the energy an oyster needs to carry out metabolic processes necessary for survival, including respiration.

There are many moving parts to this project. Reflecting on the camaraderie within the project team, post-doctoral researcher Emilien Pousse noted with appreciation, "At one point or another, half the lab was working on this experiment."

Milford scientists took respiration measurements, measured feeding rates, and tracked the amount of oyster food (algae), in the water over ten weeks. The two ocean acidification experimental systems used were built by research chemist George Sennefelder and research technician Dylan Redman. Shannon Meseck, a research chemist and member of the Northeast Coastal Acidification Network Science Working Group, leads the project.

Comparing Responses: Oysters and Surfclams

Data from the first experiment are still being analyzed, but the team has already found that shell weight was significantly lower in oysters from the low-pH treatment than those kept at the typical pH of Long Island Sound. The team is now analyzing data on feeding and respiration rates, looking for potential differences in metabolism between the treatment groups.

Oysters and surfclams have different methods of building their shells. After running the experiment on surfclams, the team plans to compare their responses to find out whether they are affected by ocean acidification in similar or different ways. In 2020, the team will work with Massachusetts Maritime Academy to study the responses of sea scallops to ocean acidification. Both surfclams and sea scallops are federally-managed species, and the scallop fishery is the most valuable in the northeast.

The results of this project will support forecasting of fishery responses to climate change and provide recommendations for both oyster growers and those working in the surfclam and scallop fisheries. Overall, it will help predict the effects of ocean acidification on both the ecosystem and the economy.

Related Articles

Gray Whale population abundance
Eastern North Pacific Gray Whale population increases after observed decline To understand how the eastern North Paci?c gray whale population is responding to changes in the environment following its recovery from low numbers due to commercial whaling, we study changes in abundance over time. Posted on 5 Apr
New research reveals diversity of Killer Whales
Long viewed as one worldwide species, killer whale diversity now merits more Scientists have resolved one of the outstanding questions about one of the world's most recognizable creatures, identifying two well-known killer whales in the North Pacific Ocean as separate species. Posted on 31 Mar
Where the Leatherbacks Roam
Leatherbacks commonly swim from the South and Mid-Atlantic Bights during the warmer months Scientists find evidence of critical feeding grounds for endangered leatherback turtles along the U.S. Atlantic coast by studying movement behavior with satellite tags. Posted on 30 Mar
Meet Makana
One of the first Hawaiian Monk Seal Pups of 2024 Hawai'i Marine Animal Response partnered with Kahuku Elementary School to name the first Hawaiian monk seal pup of O'ahu in 2024. Posted on 23 Mar
Marine heatwaves reshape ecosystem
Heatwaves are becoming more frequent and intense in our oceans A new study highlights marine heatwaves' complex and cascading effects on marine ecosystems. While some species may benefit from these changes, others are likely to struggle. Posted on 20 Mar
California Current ecosystem shows resilience
It is facing a strong 2024 El Niño event The 2023-2024 California Current Ecosystem Status Report shows an abundance of forage fish and a productive system fueled by upwelling. Posted on 19 Mar
Some research takes a lifetime
Researchers keep track of Northern Elephant Seals using flipper tags Long-term research under Marine Mammal Protection Act scientific research permits provides insight into northern elephant seal moms and pups. Posted on 17 Mar
Making strides in marine mammal research
NOAA Fisheries and partners celebrate the 50th anniversary of the Endangered Species Act 2023 marked the 50th anniversary of the Endangered Species Act. Under this law, NOAA Fisheries is responsible for the conservation and recovery of more than 160 endangered and threatened marine species—including many marine mammals. Posted on 12 Feb
NOAA Fisheries and BOEM release joint strategy
Part of a larger interagency effort to promote recovery of endangered species Today, NOAA Fisheries and the Bureau of Ocean Energy Management (BOEM) released a final joint strategy to protect and promote the recovery of endangered North Atlantic right whales while responsibly developing offshore wind energy. Posted on 26 Jan
Documenting the Elusive North Pacific Right Whale
Dive in with the NOAA Fisheries Podcast North Atlantic right whales have justly gotten a lot of attention and news coverage due to their dwindling numbers and sightings along the busy East Coast. Posted on 13 Jan
Hyde Sails 2022 One Design FOOTERCyclops Marine 2023 November - FOOTERCrewsaver 2021 Safetyline FOOTER